Sideway BICK BlogSideway BICK BLOG from Sideway

A Sideway to Sideway Home

Link:http://output.to/sideway/default.asp?qno=130400011

Primality, Theorem of Wilson, Property of Giuga, Wolstenholme's Theorem, Prime Number, number theory

Primality

Prime numbers are natural numbers, e.g. 2, 3, 5, 7,..., which can only be divided by 1 and itself. Although the way to recognize the primality of a natural numbe is very simple, there is difficulty of distinguishing prime numbers from composite numbers when natural numbers become very large.

The Theorem of Wilson  (1770)[1]

The Theorem of Wilson is a corollary of Fermat's Little Theorem by Wilson in 1770, stated that If p is a prime, then (p-1)!≡-1 (mod p) without a proof. Lagrange proves the theorem of Wilson in 1773. Let the distinct residue set {1, 2,...,(p-2),(p-1)} of a number when divided by a prime p. By polynomial expansion, let
 f(x)=(x-1)(x-2)..(x-p+2)(x-p+1)=xp-1-A1xp-2+...-Ap-2x1+Ap-1x0.
By muliply both sides by x and substitute x by x-1. Or let
 h(x)=(x-1)(f(x-1))=(x-1)(x-2)(x-3)...(x-p+1)(x-p)=(x-1)p+A1(x-1)p-1+...+Ap-2(x-1)2+Ap-1(x-1)1.
Let q(x)=(x-p)(f(x)). Then
 q(x)=(x-p)(xp-1-A1xp-2+...-Ap-2x1+Ap-1x0)=h(x)=(x-1)p-A1(x-1)p-1+...-Ap-2(x-1)2+Ap-1(x-1)1.
Further expanding terms on both sides. By collecting like terms and Equating the coefficients of terms on both sides according. Imply 
A1=(p
2
), 2A2=(p
3
)+A1(p-1
2
),
3A3=(p
4
)+A1(p-1
3
)+A2(p-2
2
), ...,

kAk=(p
k+1
)+A1(p-1
k
)+A2(p-2
k-1
)+...+Ak-2(p-k
3
)+Ak-1(p-k+1
2
)
, ... ,
(p-2)Ap-2=p+(p-1)A1+(p-2)A2+...+3Ap-3, (p-1)Ap-1=1+A1+A2+A3+...+Ap-3+Ap-2.  .  Since p|A1, then p|A2, then p|A3, ...,  then p|Ap-2, and therefore (p-1)Ap-1≡1 (mod p). Imply Ap-1≡-1 (mod p). From f(x),  Ap-1 is equal to (p-1)!, imply  (p-1)!≡-1 (mod p). Imply 

 IMAGE...

The theorem is also true for p=2. Since a composite number can be expressed as the multiplication of two numbers, so if p is a composite, it must be the product of two numbers smaller than p or (p-1)! must be the multiple of p. The theorem gives another important characterization of prime numbers and leds to the study of numbers of n!=1 and n!=1. However, this is not an effective method to test the primaity of a number because the calculation of p! involves log N steps.

The Property of Giuga (1950)[1]

From Fermat's Little theorem, jp-1≡1 (mod p) for j=1,2,3,...,p-2,p-1. The sum of these terms is equal to (p-1)≡-1 (mod p). Imply

 IMAGE...

Giuga interested in whether the converse is true or not. That is whether n is a prime if n>1 and n divides 1n-1+2n-1+3n-1+...+(n-1)n-1+1. Or whether there are composite numbers such that n=pq where p is prime and p divides 1n-1+2n-1+3n-1+...+(n-1)n-1+1. That is  Gp≡∑ n-1
j=1
jn-1+1≡0 (mod p)

 IMAGE...

The counter example, composite number,  to the Giuga condition is called a Giuga number. If n is a composite, let prime p divides n, then let n=pq. Consider the counter example, the sum of the power t=n-1 of the set of residue class when divided by prime p. That is S1≡∑ p-1
j=1
jt≡∑ p-1
j=1
jn-1≡{ -1 (mod p) if (p-1)|(n-1)
0 (mod p) if (p-1)∤(n-1)
,
therefore p-1
j=1
q(j)n-1≡q∑ p-1
j=1
jn-1≡qS1≡{ -q (mod p) if (p-1)|(n-1)
0 (mod p) if (p-1)∤(n-1)
.
Since n=pq, kp
j=kp
jn-1≡0 (mod p)
, therefore
S2≡∑ n-1
j=1
jn-1≡∑ qp-1
j=(q-1)p+1
jn-1+∑ (q-1)p
j=(q-1)p
jn-1+...+∑ 2p-1
j=p+1
jn-1+∑ p
j=p
jn-1+∑ p-1
j=1
jn-1≡q∑ p-1
j=1
jn-1≡qS1≡{ -q (mod p) if (p-1)|(n-1)
0 (mod p) if (p-1)∤(n-1)

Thus for each prime divisor p, substitute S2 into Gp, imply Gp≡{ -q+1 (mod p) if (p-1)|(n-1)
0+1 (mod p) if (p-1)∤(n-1)
≡0 (mod p)
.

 IMAGE...

Thus if Gp≡0, then (p-1)|(n-1) where (n-1) is equal to pq-1=q(p-1)+(q-1), so (p-1) divides (q-1). From Gp, (-q+1)≡0 (mod p), imply q≡1 (mod p),then p divides (q-1) also. That is (p-1)|(q-1) and p|(q-1). Besides, since p|(q-1), imply p∤q, therefore n must be squarefree. Therefore with n is squarefree, (p-1)|(q-1) and p|(q-1), each of the distinct prime divisors p of n divides Gp , this is also true for n divides Gn. With (p-1)|(q=1) and p|(q-1), imply p2(q-1)  divides pq-p or n-p. Since n≡pq≡p≡0 (mod p) and (p-1) divides (q-1), imply p|n and n≡pq-1≡q(p-1)+(q-1)≡p≡1 (mod p-1).

 IMAGE...

The Wolstenholme's Theorem (1862)[1]

Another property of prime is from wolstenholme, proved in 1862 that if p is a prime greater or equal to 5 then p2 divides the numerator of 1+12+13+...+1p-1 and p divides the numerator of 1+122+132+...+1(p-1)2. And prime n greater than 3, n3 divides the combination of 2n-1 takes n-1 minus 1

Let H(p-1)= 11+12+13+...+1p-2+1p-1. By terms rearrangement, H(p-1)=(11+1(p-1))+(12+1(p-2))+...+(1((p-1)/2)+1(p-((p-1)/2))) = (((p-1)+1)((1)(p-1)))+(((p-2)+2)((2)(p-2)))+...+(((p-(p-1)/2)+((p-1)/2))((p-1)/2)(p-(p-1)/2)) = (p((1)(p-1)))+(p((2)(p-2)))+...+(p((p-1)/2)(p-(p-1)/2)) = p((1((1)(p-1)))+(1((2)(p-2)))+...+(1((p-1)/2)(p-(p-1)/2))) . The denominators of H(p-1) can be reduced to the least common denominator of the denominators. The numerator of fractions of H(p-1) can then be replaced by an integer A.  Imply H(p-1)=pA(p-1)!. Where A is equal to ((p-1)!((1)(p-1)))+((p-1)!((2)(p-2)))+...+((p-1)!((p-1)/2)(p-(p-1)/2)) Since no factor in (p-1)! can divide p, the p must divide the numerator of H(p-1).

 IMAGE...

Let Ak=(p-1)!/(k(p-k)), then (k(p-k))Ak=(p-1)!. By Wilson's Theorem, (k(p-k))Ak≡(p-1)!≡-1 (mod p). Imply (pkAk-k2Ak)≡-k2Ak≡-1 (mod p). Imply k2Ak≡1 (mod p). Therefore Ak≡(p-1)!/(k(p-k))≡(k2)-1 (mod p). As k≢0 (mod p), Ak≡(p-1)!/(k(p-k))≡(k2)-1≡(k-1)2 (mod p). Imply A≡(12)-1+(22)-1+...+(k2)-1+...+(((p-1)/2)2)-1≡(1-1)2+(2-1)2+...+(k-1)2+...+(((p-1)/2)-1)2 (mod p) Since k2≡(-k)2 and (-k-1)≡-(k)-1 (mod p). Therefore A+A which is equal to (1-1)2+(2-1)2+...+(k-1)2+...+(((p-1)/2)-1)2+(1-1)2+(2-1)2+...+(k-1)2+...+(((p-1)/2)-1)2 (mod p) can be expressed as
 (1-1)2+(2-1)2+...+(k-1)2+...+(((p-1)/2)-1)2+(-(1-1))2+(-(2-1))2+...+(-(k-1))2+...+(-(((p-1)/2)-1))2 (mod p)(1-1)2+(2-1)2+...+(k-1)2+...+(((p-1)/2)-1)2+((-1)-1)2+((-2)-1)2+...+((-k)-1)2+...+((-((p-1)/2))-1)2 (mod p). Since -1≡p-1 (mod p), therefore
 A+A≡(1-1)2+(2-1)2+...+(k-1)2+...+(((p-1)/2)-1)2+((p-1)-1)2+((p-2)-1)2+...+((p-k)-1)2+...+((p-((p-1)/2))-1)2 (mod p). After rearrangement
 A+A≡(1-1)2+(2-1)2+...+(k-1)2+...+(((p-1)/2)-1)2+(((p+1)/2)-1)2+...+((p-k)-1)2+...+((p-2)-1)2+((p-1)-1)2 (mod p). Imply A+A≡(1-1)2+(2-1)2+...+(k-1)2+...+((p-2)-1)2+((p-1)-1)2 (mod p). Since both the number and its modular inverse sets of modulo prime p are equal to the same subset of the set {1,2,3,...,(p-1)}, imply 12+22+...+(p-1)2≡(1-1)2+(2-1)2+...+((p-1)-1)2 (mod p). Imply A+A≡(1)2+(2)2+...+(k)2+...+((p-2))2+((p-1))2 (mod p). As the sum of series of squares 12+22+...+(p-1)2 is equal to ((p-1)((p-1)+1)(2(p-1)+1))/6=((p-1)(p)(2p-1))/6, imply 6 divides ((p-1)(p)(2p-1)). As 6 does not divide p, then 6 divides ((p-1)(2p-1)). Therefore 12+22+...+(p-1)2((p-1)((p-1)+1)(2(p-1)+1))/6≡0 (mod p). Imply A+A≡(1)2+(2)2+...+(k)2+...+((p-2))2+((p-1))2≡0 (mod p).

  IMAGE...

Thus 2A≡0 (mod p). Since 2∤p, imply p|A, that is A≡0 (mod p). Therefore A can be expressed as pB where B is an integer and substitute into H, that is H(p-1)≡pA/(p-1)!≡p2B/(p-1)! (mod p). As none of the factors in the denominator of H(p-1) can divide p, p2 must divide the numerator of H(p-1)=11+12+13+...+1p-2+1p-1. Since p divides 2A ,  2A=112+122+132+...+1(p-1)2 , 6 does not divide p and as p greater or equal to 5, p does not divide 6 also. Imply p divides the numerator of 112+122+132+...+1(p-1)2  .

 IMAGE...

Based on these properties, wolstenholme generalizes to the property to the special case of n-1 combinations of 2n-1 is equivalent to 1 when divided by n3. The series 1+12+13+...+1n-1 can be obtained from a combinatorial series.

 IMAGE...

If n is a prime greater than 2, then n is odd and the sign of coefficient of f(n-1) can be fixed. Therefore f(n-1) can be expressed as.

 IMAGE...

Part of the multiple of n2 of 2f(n-1) is represented by A. Further, part of the multiple of n of remaining 2f(n-1) can also be represented by B as following.

 IMAGE...

The part of the multiple of n can also be expressed in term of n2 also. Besides the remaining part can also be expressed in term of f(n-1). Imply.

 IMAGE...

Therefore, if prime n greater than 3, n2 divides numerator of f(n-1). Similarly the series 1+122+132+...+1(n-1)2 can also be obtained from f(n-1). Imply.

 IMAGE...

Similarly the series can be expressed in term of f(n-1) also. Imply.

 IMAGE...

Therefore, as limited by f(n-1), if prime n greater than 3, n2 divides numerator of g(n-1). Based on these properties, the combination of 2n-1 takes n-1 can also be expressed in terms of f(n-1). Imply.

 IMAGE...

Therefore, as limited by f(n-1), if prime n greater than 3, n3 divides the combination of 2n-1 takes n-1 minus 1.

Previous Month  APR  2013  Next Month
SMTWTFS
123456
78910111213
14151617181920
21222324252627
282930

Previous Month  SEP  2016  Next Month
SMTWTFS
123
45678910
11121314151617
18192021222324
252627282930

Sideway BICK Blog

19/04


Copyright © 2000-2020 Sideway . All rights reserved Disclaimerslast modified on 26 January 2013