Sideway BICK BlogSideway BICK BLOG from Sideway

A Sideway to Sideway Home

Link:http://output.to/sideway/default.asp?qno=190300017

Complex Analysis Complex Number Function

source/reference:
https://www.youtube.com/channel/UCaTLkDn9_1Wy5TRYfVULYUw/playlists

Complex Function

Function

In general, a function ƒ:A→B is a rule that assigns to each element of A exactly one element of B. for example, ƒ:ℝ→ℝ, ƒ(x)=x²+1. Since ℝ can be represented by a one dimensional number line, the function mapping can be represented by a graph in the x-y plane.

Complex Function

For a complex function, for example, ƒ:ℂ→ℂ ƒ(z)=z²+1.

Let z=x+𝑖y, w=ƒ(z)
⇒w=ƒ(z)=(x+𝑖y)²+1
⇒w=(x²-y²+1)+𝑖(2xy)
⇒w=u(x,y)+𝑖v(x,y) where u,v:ℝ²→ℝ

Graphing Complex Function

Two complex planes are used to graph the complex function. One is for the domain and one is for the range. These complex planes can be used to analyze how geometric configurations in the z-plane are mapped under ƒ to the w-plane.

For example

Let w=ƒ(z)=z² , z=re𝑖θ
⇒w=(re𝑖θ)²=r²e2𝑖θ
⇒|w|=|z|², arg w=2arg z

As z moves around a circle of radius r in z-plane once, w moves around the circle of radius r² at double speed twice in w-plane.

For example

Let w=w'+c, c∊ℂ, w'=ƒ(z)=z²,  z=re𝑖θ
⇒w'=(re𝑖θ)²=r²e2𝑖θ
⇒|w'|=|z|², arg w'=2arg z
∴w=r²e2𝑖θ+c
Previous Month  MAR  2019  Next Month
SMTWTFS
12
3456789
10111213141516
17181920212223
24252627282930
31

Previous Month  SEP  2016  Next Month
SMTWTFS
123
45678910
11121314151617
18192021222324
252627282930

Sideway BICK Blog

17/03


Copyright © 2000-2020 Sideway . All rights reserved Disclaimerslast modified on 26 January 2013