Sideway BICK BlogSideway BICK BLOG from Sideway

A Sideway to Sideway Home

Link:http://output.to/sideway/default.asp?qno=190300015

Complex Analysis Complex Number

source/reference:
https://www.youtube.com/channel/UCaTLkDn9_1Wy5TRYfVULYUw/playlists

Complex Number

Complex Number

Complex numbers are numbers containing a real part and an imaginary part. The real part is equal to an ordinary real number in value, while the imaginary part is equal to an imaginary value with an imaginary unit √-1 in unit and an ordinary real number in magnitude. A complex number z is therefore usually expressed as x+𝑖y algebraically.

Complex Plane

Rectangular Coordinates

The expression of a complex number of the form z=x+𝑖y can be identified as the two elements of a double tuple

  • x=Re z and x is called the real part of complex number z
  • y=Im z and y is called the imaginary part of complex number z

Both x and y are real numbers and 𝑖 is the imaginary unit. The set of complex numbers can therefore be represented in the complex plane β„‚, with both vertical and horizontal axes are real number value. While real numbers can be considered as complex numbers whose imaginary part is equal to zero. Real numbers is therefore the subset of the complex numbers. and the complex plane can be identified with ℝ².

Polar Coordinates

Consider z=x+𝑖yβˆˆβ„‚, zβ‰ 0. The coordinates of z can also be described by the distance r from the origin, r=|z| and the angle πœƒ between the positive x-axis and the line segment from orign 0 to complex number z. In other words, (r, πœƒ) are the polar coordinates of z.

Through geometric conversion, the Cartesian coordinates can also be expressed as polar representation of z in terms of polar coordinates.

x=rcosπœƒ
y=rsinπœƒ
∡z=x+𝑖yβ‡’z=rcosοΏ½οΏ½οΏ½+𝑖rsinπœƒβ‡’z=r(cosπœƒ+𝑖sinπœƒ)

Exponential Notation

Exponential notation eπ‘–πœƒ is a more convenient notation or compact notation for complex number, cos πœƒ+𝑖sin πœƒ.

ex=1+x+x2/2!+x3/3!+x4/4!+x5/5!+x6/6!+x7/7!+β‹―
β‡’e𝑖x=1+𝑖x+(𝑖x)2/2!+(𝑖x)3/3!+(𝑖x)4/4!+(𝑖x)5/5!+(𝑖x)6/6!+(𝑖x)7/7!+β‹―
β‡’e𝑖x=1+𝑖x+𝑖2x2/2!+𝑖3x3/3!+𝑖4x4/4!+𝑖5x5/5!+𝑖6x6/6!+𝑖7x7/7!+β‹―
βˆ΅π‘–2=-1, 𝑖3=-𝑖, 𝑖4=1, 𝑖5=i, β‹―
β‡’e𝑖x=1+𝑖x-x2/2!-𝑖x3/3!+x4/4!+𝑖x5/5!-x6/6!-𝑖x7/7!+β‹―
β‡’e𝑖x=(1-x2/2!+x4/4!-x6/6!+β‹―)+(𝑖x-𝑖x3/3!+𝑖x5/5!-𝑖x7/7!+β‹―)
β‡’e𝑖x=(1-x2/2!+x4/4!-x6/6!+β‹―)+𝑖(x-x3/3!+x5/5!-x7/7!+β‹―)
∡cos x=1-x2/2!+x4/4!-x6/6!+β‹― and
 sin x=x-x3/3!+x5/5!-x7/7!+β‹―
β‡’e𝑖x=cos x+𝑖sin x

Therefore exponential notation can be used as the polar form of complex numbers

z=r(cosπœƒ+𝑖sinπœƒ)=re𝑖x

Similarly,

eπ‘–πœƒ=e𝑖(πœƒ+2πœ‹)=e𝑖(πœƒ+4πœ‹)=β‹―=e𝑖(πœƒ+2kπœ‹), kβˆˆβ„€

For examples,

eπ‘–πœ‹/2=cos(πœ‹/2)+𝑖sin(πœ‹/2)=i
eπ‘–πœ‹=cos(πœ‹)+𝑖sin(πœ‹)=-1
e2πœ‹π‘–=cos(2πœ‹)+𝑖sin(2πœ‹)=1
e-π‘–πœ‹/2=cos(-πœ‹/2)+𝑖sin(-πœ‹/2)=-𝑖
eπ‘–πœ‹/4=cos(πœ‹/4)+𝑖sin(πœ‹/4)=(1+𝑖)/√2

Algebraic and Geometric of Complex Number

Addition of Complex Numbers

Since the real unit of real part is 1 and the imaginary unit of imagibary part is 𝑖, the real and imaginary parts of a complex number should be manipulated accordingly.

Algebraically, the addition of two complex numbers z=x+𝑖y and w=u+𝑖v is

z+w=(x+𝑖y)+(u+𝑖v)=(x+u)+𝑖(y+v)

In other words, Re(z+w)=Re x+Re w and Im(z+w)=Im z+Im w

Geometrically, the addition of two complex numbers corresponds to the vector addition of the two corresponding complex number vectors.

Modulus of Complex Number

By definition, the modulus of a complex number z=x+𝑖y is the length or magnitude of the vector z:

|z|=√(x²+y²)
β‡’|z|Β²=xΒ²+yΒ²

Multiplication of Complex Numbers

The multiplication of two complex numbers z=x+𝑖y and w=u+𝑖v can be manipulated as an ordinary multiplication:

zw=(x+𝑖y)(u+𝑖v)=xu+𝑖xv+𝑖yu+𝑖²yv
βˆ΅π‘–=√-1; βˆ΄π‘–Β²=-1
β‡’zw=(x+𝑖y)(u+𝑖v)=xu+𝑖xv+𝑖yu+𝑖²yv=xu-yv+𝑖(xv+yu)

Algebraically, the multiplication of two complex numbers z=x+𝑖y and w=u+𝑖v is

zw=(x+𝑖y)(u+𝑖v)=xu-yv+𝑖(xv+yu)βˆˆβ„‚

The usual properties hold:

  • associative: (z₁zβ‚‚)z₃=z₁(zβ‚‚z₃)
    (z₁zβ‚‚)z₃=((x+𝑖y)(u+𝑖v))(p+𝑖q)=((xu-yv)+𝑖(xv+yu))(p+𝑖q)=((xu-yv)p-(xv+yu)q)+𝑖((xu-yv)q+(xv+yu)p)
    β‡’(z₁zβ‚‚)z₃=(xup-yvp-xvq-yuq)+𝑖(xuq-yvq+xvp+yup)=(x(up-vq)-y(vp+uq))+𝑖(x(uq+vp)+y(up-vq))
    β‡’(z₁zβ‚‚)z₃=x(up-vq)+𝑖²y(vp+uq)+𝑖x(uq+vp)+𝑖y(up-vq)=(x+𝑖y)((up-vq)+𝑖(uq+vp))
    β‡’(z₁zβ‚‚)z₃=(x+𝑖y)(up+𝑖²vq+𝑖uq+𝑖vp)=(x+𝑖y)((u+𝑖v)(p+𝑖q))=z₁(zβ‚‚z₃)
  • commutative: z₁zβ‚‚=zβ‚‚z₁
    z₁zβ‚‚=(x+𝑖y)(u+𝑖v)=(xu-yv)+𝑖(xv+yu)=xu-yv+𝑖xv+𝑖yu=xu+𝑖yu+𝑖²yv+𝑖xv
    β‡’z₁zβ‚‚=u(x+𝑖y)+𝑖v(x+𝑖y)=(u+𝑖v)(x+𝑖y)=zβ‚‚z₁
  • distributive: z₁(zβ‚‚+z₃)=z₁zβ‚‚+z₁z₃ or  (zβ‚‚+z₃)z₁=zβ‚‚z₁+z₃z₁ commutatively
    z₁(zβ‚‚+z₃)=(x+𝑖y)((u+𝑖v)+(p+𝑖q))=(x+𝑖y)((u+p)+𝑖(v+q))=(x(u+p)-y(v+q))+𝑖(x(v+q)+y(u+p))=xu+xp-yv-yq+𝑖xv+𝑖xq+𝑖yu+𝑖yp
    β‡’z₁(zβ‚‚+z₃)=xu+𝑖xv+𝑖²yv+𝑖yu+xp+𝑖xq+𝑖²yq+𝑖yp=x(u+𝑖v)+𝑖y(𝑖v+u)+x(p+𝑖q)+𝑖y(𝑖q+p)
    β‡’z₁(zβ‚‚+z₃)=(x+𝑖y)(u+𝑖v)+(x+𝑖y)(p+𝑖q)=z₁zβ‚‚+z₁z₃
    

Multiplication of Imaginary Unit 𝑖

By definition, an imaginary unit 𝑖 is equal to √-1. Therefore 𝑖²=-1. The multiplication of imaginary unit is

i=0+1iβ‡’iΒ²=(0+1i)(0+1i)=(0*0+𝑖²*1*1+𝑖(0*1+1*0)=(0*0-1*1+𝑖(0*1+1*0)=-1

Therefore

  • 𝑖=√-1
  • 𝑖²=𝑖*𝑖=-1
  • 𝑖³=𝑖²*𝑖=-1*𝑖=-𝑖
  • 𝑖⁴=𝑖²*𝑖²=-1*-1=1
  • 𝑖⁡=𝑖⁴*𝑖=1*𝑖=𝑖
  • 𝑖⁢=𝑖⁡*𝑖=𝑖*𝑖=-1

Complex Conjugate of Complex Numbers

By definition, if complex number z=x+𝑖y then z̅=x-𝑖y is the complex conjugate of z

The properties of complex conjugate is:

  • z̿=z
    z=x+𝑖yβ‡’z̅=x-𝑖yβ‡’z̿=x-𝑖y=x+𝑖y=z
  • z+w=z̅+w̅
  • z/w=z̅/w̅; wβ‰ 0
  • |z|=|z̅|
  • zz̅=(x+𝑖y)(x-𝑖y)=xΒ²+yΒ²=|z|Β²=|z̅|Β²
  • 1/z=z̅/zz̅=z̅/|z|Β²;  zβ‰ 0
  • if zβˆˆβ„ then z=z̅
  • Re z=(z+z̅)/2; Im z=(z-z̅)/2i
    z+z̅=(x+𝑖y)+(x-𝑖y)=2xβ‡’x=(z+zΓŒβ€¦)/2=Re z
    z-z̅=(x+𝑖y)-(x-𝑖y)=𝑖2yβ‡’y=(z+zΓŒβ€¦)/2𝑖=Im z

Division of Complex Numbers

The division of complex numbers z/w can be performed by making use of the complex conjugate of complex number w, since 1/z=z̅/|z|Β². Suppose that z=x+𝑖y and w=u+𝑖v.

z/w=(x+𝑖y)/(u+𝑖v)=(x+𝑖y)(u-𝑖v)/(u+𝑖v)(u-𝑖v)=((xu+yv)+𝑖(-xv+yu))/(uΒ²+vΒ²+𝑖(-uv+vu))
β‡’z/w=(x+𝑖y)/(u+𝑖v)=((xu+yv)/(uΒ²+vΒ²))+𝑖((yu-xv)/(uΒ²+vΒ²))

More Properties of Complex Numbers

  • |z*w|=|z|*|w|
  • |z|=0 if and only if z=0
  • -|z|≀Re z≀|z|
  • -|z|≀Im z≀|z|
  • |z+w|≀|z|+|w|; Triangle Inequality
  • |z-w|β‰₯|z|-|w|; Reverse Triangle Inequality

Argument of Complex Numbers

The argument of a complex number z is the counterclockwise angle πœƒ measured from the real positive axis to the line segment from orign 0 to complex number z. The argument of a complex number is not unique and argument is a multi-valued function.

By definition, the principal argument of z, Arg z, is the value of πœƒ for which -πœ‹<πœƒβ‰€πœ‹ and the argument of z is

arg z={Arg z+2πœ‹k:k=0,Β±1,Β±2,β‹―},zβ‰ 0.

Since z=x+𝑖y=r(cosπœƒ+𝑖sinπœƒ), if r=1 then

Arg 𝑖=πœ‹/2
Arg 1=0
Arg(-1)=πœ‹
Arg(-𝑖)=-πœ‹/2
Arg(1-𝑖)=-πœ‹/4

Properties of Exponential Notation

  • |eπ‘–πœƒ|=1
    |eπ‘–πœƒ|=|cosπœƒ+𝑖sinπœƒ|=√(cosΒ²πœƒ+sinΒ²πœƒ)=√1=1
  • eπ‘–πœƒ=e-π‘–πœƒ
    eπ‘–πœƒ=cosπœƒ+𝑖sinπœƒ=cosπœƒ-𝑖sinπœƒ=cosπœƒ+𝑖sin(-πœƒ)=cos(-πœƒ)+𝑖sin(-πœƒ)=e-π‘–πœƒ
  • 1/(eπ‘–πœƒ)=e-π‘–πœƒ
    1/(eπ‘–πœƒ)=(eπ‘–πœƒ)/((eπ‘–πœƒ)(eπ‘–πœƒ))=(e-π‘–πœƒ)/((eπ‘–πœƒ)(e-π‘–πœƒ))=(e-π‘–πœƒ)/1=e-π‘–πœƒ
  • e𝑖(πœƒ+πœ‘)=eπ‘–πœƒeπ‘–πœ‘
    e𝑖(πœƒ+πœ‘)=cos(πœƒ+πœ‘)+𝑖sin(πœƒ+πœ‘)=cosπœƒcosπœ‘-sinπœƒsinπœ‘+𝑖(sinπœƒcosπœ‘+cosπœƒsinπœ‘)
    β‡’e𝑖(πœƒ+πœ‘)=cosπœƒcosπœ‘+𝑖²sinπœƒsinπœ‘+𝑖sinπœƒcosπœ‘+𝑖cosπœƒsinπœ‘=(cosπœƒ+𝑖sinπœƒ)(cosπœ‘+𝑖sinπœ‘)
    β‡’e𝑖(πœƒ+πœ‘)=eπ‘–πœƒeπ‘–πœ‘

Properties of Argument Function

  • arg(z̅)=-arg(z)
    arg(z̅)=arg(reπ‘–πœƒ)=arg(re-π‘–πœƒ)=-πœƒ=-arg(reπ‘–πœƒ)=-arg(z)
  • arg(1/z)=-arg(z)
    arg(1/z)=arg(1/(eπ‘–πœƒ))=arg(eπ‘–πœƒ)=arg(z̅)=-arg(z)
  • arg(z₁zβ‚‚)=arg(z₁)+arg(zβ‚‚)
    arg(z₁zβ‚‚)=arg(eπ‘–πœƒeπ‘–πœ‘)=arg(e𝑖(πœƒ+πœ‘))=πœƒ+πœ‘=arg(eπ‘–πœƒ)+arg(eπ‘–πœ‘)

Multiplication in Polar Form 

Consider z₁=r₁eπ‘–πœƒβ‚ and zβ‚‚=rβ‚‚eπ‘–πœƒβ‚‚, the multiplication in polar form is

z₁zβ‚‚=r₁eπ‘–πœƒβ‚rβ‚‚eπ‘–πœƒβ‚‚=r₁rβ‚‚e𝑖(πœƒβ‚+πœƒβ‚‚)

De Moivre's Formula 

De Moivre's Formula states that for any complex number (and, in particular, for any real number) x and integer n it holds that

(cos(x)+𝑖sin(x))ⁿ=cos(nx)+𝑖sin(nx)

By polar form

eπ‘–πœƒeπ‘–πœƒ=e𝑖(πœƒ+πœƒ)=e𝑖(2πœƒ)
(eπ‘–πœƒ)Β³=e𝑖(2πœƒ)eπ‘–πœƒ=e𝑖(3πœƒ)
(eπ‘–πœƒ)ⁿ=e𝑖nπœƒ
also true for negative n, (eπ‘–πœƒ)⁻ⁿ=(1/(eπ‘–πœƒ))ⁿ=(e-π‘–πœƒ)ⁿ
β‡’(cos(x)+𝑖sin(x))ⁿ=(e𝑖x)ⁿ=e𝑖nx=cos(nx)+𝑖sin(nx)

Consequences of De Moivre's formula

De Moivre's formula can be used to derive equations for sine and cosine

For examples, n=3

(cos(x)+𝑖sin(x))Β³=cosΒ³(x)+3cosΒ²(x)(𝑖sin(x))+3cos(x)(𝑖sin(x))Β²+(𝑖sin(x))Β³
β‡’(cos(x)+𝑖sin(x))Β³=cosΒ³(x)-3cos(x)sinΒ²(x)+𝑖(3cosΒ²(x)sin(x)-sinΒ³(x))=cos(3x)+𝑖sin(3x)
β‡’cos(3x)=cosΒ³(x)-3cos(x)sinΒ²(x) and sin(3x)=3cosΒ²(x)sin(x)-sinΒ³(x)

Nth Root of Complex Number

By definition, let w be a complex number. An nth root of w is a complex number z such that zⁿ=w.

By polar form, let w=𝜌eπ‘–πœ‘ , and z=reπ‘–πœƒ , then

 zⁿ=w
β‡’(reπ‘–πœƒ)ⁿ=𝜌eπ‘–πœ‘ 
β‡’rⁿe𝑖nπœƒ=𝜌eπ‘–πœ‘ 
β‡’rⁿ=𝜌, and e𝑖nπœƒ=eπ‘–πœ‘ 
β‡’r=ⁿ√𝜌, and nπœƒ=πœ‘+2kπœ‹, kβˆˆβ„€
β‡’πœƒ=πœ‘/n+2kπœ‹/n, k=0,1,2,β‹―,n-1
β‡’w1/n=ⁿ√𝜌 e𝑖(πœ‘/n+2kπœ‹/n), k=0,1,2,β‹―,n-1

Nth Root of Unity

By definition, the nth roots of 1 are called the nth roots of unity.

    

By polar form, let 1=1e𝑖0 , then

11/n=ⁿ√1 e𝑖(0/n+2kπœ‹/n), k=0,1,2,β‹―,n-1
β‡’11/n=e𝑖(2kπœ‹/n), k=0,1,2,β‹―,n-1
Previous Month  MAR  2019  Next Month
SMTWTFS
12
3456789
10111213141516
17181920212223
24252627282930
31

Previous Month  SEP  2016  Next Month
SMTWTFS
123
45678910
11121314151617
18192021222324
252627282930

Sideway BICK Blog

15/03


Copyright © 2000-2020 Sideway . All rights reserved Disclaimerslast modified on 26 January 2013